Search results for " 46B22"

showing 5 items of 5 documents

Daugavet- and delta-points in Banach spaces with unconditional bases

2020

We study the existence of Daugavet- and delta-points in the unit sphere of Banach spaces with a 1 1 -unconditional basis. A norm one element x x in a Banach space is a Daugavet-point (resp. delta-point) if every element in the unit ball (resp. x x itself) is in the closed convex hull of unit ball elements that are almost at distance 2 2 from x x . A Banach space has the Daugavet property (resp. diametral local diameter two property) if and only if every norm one element is a Daugavet-point (resp. delta-point). It is well-known that a Banach space with the Daugavet property does not have an unconditional basis. Similarly spaces with the diametral local diameter two property do not have an un…

Convex hullUnit spherePure mathematicsMathematics::Functional AnalysisProperty (philosophy)Basis (linear algebra)010102 general mathematics05 social sciencesMathematicsofComputing_GENERALBanach spaceGeneral MedicineVDP::Matematikk og Naturvitenskap: 400::Matematikk: 41001 natural sciences46B20 (Primary) 46B22 46B04 (Secondary)Functional Analysis (math.FA)Mathematics - Functional AnalysisNorm (mathematics)0502 economics and businessFOS: Mathematics050207 economics0101 mathematicsElement (category theory)Constant (mathematics)Mathematics
researchProduct

Asymptotic geometry and Delta-points

2022

We study Daugavet- and $\Delta$-points in Banach spaces. A norm one element $x$ is a Daugavet-point (respectively a $\Delta$-point) if in every slice of the unit ball (respectively in every slice of the unit ball containing $x$) you can find another element of distance as close to $2$ from $x$ as desired. In this paper we look for criteria and properties ensuring that a norm one element is not a Daugavet- or $\Delta$-point. We show that asymptotically uniformly smooth spaces and reflexive asymptotically uniformly convex spaces do not contain $\Delta$-points. We also show that the same conclusion holds true for the James tree space as well as for its predual. Finally we prove that there exis…

Mathematics - Functional Analysis46B20 46B22 46B04 46B06 (Primary)Mathematics::Functional AnalysisAlgebra and Number TheoryFOS: MathematicsVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410AnalysisFunctional Analysis (math.FA)Banach Journal of Mathematical Analysis
researchProduct

The metric-valued Lebesgue differentiation theorem in measure spaces and its applications

2021

We prove a version of the Lebesgue Differentiation Theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon-Nikod\'{y}m property.

Mathematics - Functional AnalysisMathematics::Functional AnalysisAlgebra and Number Theorymeasurable Banach bundleLebesgue differentiation theoremFOS: MathematicsRadon–Nikodým propertyBanachin avaruudetdisintegration of a measure28A15 28A51 46G15 18F15 46G10 46B22 28A50von Neumann liftingAnalysisFunctional Analysis (math.FA)
researchProduct

New applications of extremely regular function spaces

2017

Let $L$ be an infinite locally compact Hausdorff topological space. We show that extremely regular subspaces of $C_0(L)$ have very strong diameter $2$ properties and, for every real number $\varepsilon$ with $0<\varepsilon<1$, contain an $\varepsilon$-isometric copy of $c_0$. If $L$ does not contain isolated points they even have the Daugavet property, and thus contain an asymptotically isometric copy of $\ell_1$.

Mathematics::Functional AnalysisProperty (philosophy)Function spaceMathematics::Operator AlgebrasGeneral MathematicsHausdorff spaceTopological spaceLinear subspaceFunctional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisFOS: Mathematics46B20 46B22Locally compact spaceMathematicsReal number
researchProduct

On Daugavet indices of thickness

2020

Inspired by R. Whitley's thickness index the last named author recently introduced the Daugavet index of thickness of Banach spaces. We continue the investigation of the behavior of this index and also consider two new versions of the Daugavet index of thickness, which helps us solve an open problem which connect the Daugavet indices with the Daugavet equation. Moreover, we will improve the formerly known estimates of the behavior of Daugavet index on direct sums of Banach spaces by establishing sharp bounds. As a consequence of our results we prove that, for every $0<\delta<2$, there exists a Banach space where the infimum of the diameter of convex combinations of slices of the unit ball i…

Unit spherePure mathematicsMathematics::Functional AnalysisIndex (economics)Existential quantificationOpen problem010102 general mathematicsRegular polygonBanach space01 natural sciencesInfimum and supremumFunctional Analysis (math.FA)Negative - answerMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics46B20 46B22010307 mathematical physics0101 mathematicsAnalysisMathematics
researchProduct